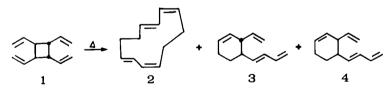
Tetrahedron Letters, Vol.26, No.43, pp 5289-5290, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.


THERMAL BEHAVIOR OF TRANS, TRANS, TRANS, 1, 2, 3, 4-TETRAVINYLCYCLOBUTANE

Evelyn Fischer and Rolf Gleiter*

Institut für Organische Chemie der Universität Heidelberg Im Neuenheimer Feld 270, D-6900 Heidelberg, W. Germany

Above 420° C the title compound decomposes to trans-hexatriene and cyclohexadiene-1,3. At temperatures above 770° C only cyclohexadiene-1,3 and benzene are found.

Cis, trans, cis-1,2,3,4-tetravinylcyclobutane ($\underline{1}$) rearranges above 120°C in 1,3,7,9-cyclododecatetraene ($\underline{2}$) and anti and syn 4-butadienyl-3-vinyl-1-cyclohexene ($\underline{3}$ and $\underline{4}$)¹. This reaction can be rationalized by assuming a Cope rearrangement between the cis-divinyl groups via a boat-like transition state. For trans, trans, trans-1,2,3,4-tetravinylcyclobutane ($\underline{5}$)² a boat-like transition state is not possible and a chair like is much less favoured for steric

reasons 3 . To study its thermal behavior we have heated $\frac{5}{2}$ in the gas phase between 200 and 800° C in a quartz tube under reduced pressure (10^{-1} - 10^{-3} Torr).

In contrast to $\underline{1}$, $\underline{5}$ is thermally stable up to 420°C in the gas phase. Around 530°C an almost quantitative decomposition into trans-hexatriene ($\underline{6}$) and cyclohexadiene-1,3 ($\underline{8}$) has been found in the approximate ratio of 1:1. With increasing temperature the ratio $\underline{6}:\underline{8}$ decreases so that at 770°C no $\underline{6}$ can be detected any more, instead benzene ($\underline{9}$) is found in an increasing amount. The occurence of $\underline{8}$ and $\underline{9}$ can be understood by assuming cis-hexatriene ($\underline{7}$) as an intermediate.

The different behavior of $\underline{5}$ compared to $\underline{1}$ can be rationalized by assuming a breaking of one cyclobutane C-C bond. The biradical intermediate ($\underline{10}$) either further decomposes to $\underline{6}$ or isomerizes to $\underline{11}$ or $\underline{12}$. The latter decompose to $\underline{6}$ and/or $\underline{7}$ respectively as indicated below. From the fact that no C_{12} hydrocarbons like $\underline{2}$ - $\underline{4}$ or 1,2,3-trivinylcyclohexene-4 could be detected we infer

that at temperatures above 400° C and at reduced pressure the decomposition of $\underline{19}$ - $\underline{12}$ is favoured compared to any further rearrangement. In line with our interpretation are experiments by Vogel³ as well as Hammond and De Boer⁴ which show that trans-1,2-divinylcyclobutane ($\underline{13}$) rearranges thermally via a biradical intermediate. Furthermore it is reported that during the thermolysis of $\underline{13}^4$ and of $\underline{8}^5$ the amount of butadiene or benzene, respectively, increases with increasing temperature.

This work has been supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- 1 K.Gubernator, R.Gleiter, Angew.Chem.<u>94</u>, 710 (1982); Angew.Chem.Int.Ed.<u>21</u>, 686 (1982); Angew.Chem.Suppl. 1982, 1491.
- 2 R.Gleiter, R.Haider, K.Gubernator, P.Bischof, Chem.Ber. 116, 2983 (1983).
- 3 E.Vogel, Angew.Chem. 74, 829 (1962); Angew.Chem.Int.Ed.2, 1 (1963).
- 4 G.S.Hammond, C.De Boer, J.Am.Chem.Soc. 86, 899 (1964).
- 5 F.O.Rice, A.L.Stallbaumer, J.Am.Chem.Soc.<u>64</u>, 1527 (1942); V.A.Mironov, A.A.Akhrem, Izv. Akad.Nauk. S.S.R.,Ser.Khim.<u>1967</u>, 698 (C.A.<u>68</u>, 2607 f). (Received in Germany 7 August 1985)